Study opportunities

New PhD topic funding available

“Assessing soil carbon changes associated with land management and land use practice changes”


When you do contact us, it is critical to be specific about your interests rather than asking us to generically look at your CV. The more you can demonstrate your knowledge and interest in a specific topic the more likely we will be able to take your application seriously. We are also wary of opening attachments as these have been used in the past as Malware.

We have a wide variety of other research interests and below we list a few of our most recent specific interests. These projects can be tailored to fit an MSc or PhD thesis.

Currently, these projects do not have funding but the University does offer PhD scholarships for both New Zealanders and international students through the general MSc and PhD University of Waikato scholarships. These are very competitive and require careful consultation between the potential applicant and an academic at the University.

We are happy to discuss potential projects but receive frequent requests to work with us on projects. We can only support a few applicants and our support does not guarantee success in obtaining a scholarship. Consequently, if you are interested in one of these projects it is important that you demonstrate to us that you understand and are genuinely engaged in the topic.

The criteria for success also depends on prior academic achievement, e.g., high GPA or equivalent and also a desire to fit into our team.

We certainly don’t claim to have all the good ideas so we welcome your own ideas particularly if they fit within the our current and recent projects. So feel free to contact us.

Possible topics

Methane emissions from grazed pastures (PhD). We have recently observed higher than expected methane fluxes from pastures in the absence of animals. We have been using eddy covariance techniques and our observations are similar to other published studies using similar techniques. It is unclear where these fluxes originate from and environmental factors that might regulate emissions. We are interested in a PhD candidate to analyse our 3-year data set of fluxes for patterns and regulatory factors. This PhD would also explore where methane might be generated by measuring the methane concentration gradient in the vadose zone and groundwater. Simple physical modeling of diffusion through the profile might also yield interesting results.

Temperature dependence of soil biology. With Vic Arcus, we have developed a new theory of temperature dependence of biological rates. We are interested in determining testing how well this theory predicts a range of soil biological processes. We have specific interest in how carbon cycling  in soil (e.g., carbon quality and supply, respiration) is responsive to temperature. See:

Schipper, L.A.; Hobbs, J.K.; Rutledge S.; Arcus, V.L. (2014) Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Global Change Biology. 20, 3578–3586. DOI: 10.1111/gcb.12596.

Arcus, V.L.; Prentice, E.; Hobbs, J.K.; Mulholland, A.J.; Vander Kamp, M.W.; Pudney, C.R.; Parker, E.J.; Schipper, L.A. (2016) On the temperature dependence of enzyme-catalysed rates. Biochemistry. 55: 1681-1688. ACS Editors’ Choice

Ecohydrology of the Kopuatai peat bog (MSc). An unusual feature of the large raised bogs of northern New Zealand is that they exist in a climate zone that suffers from frequent large seasonal water deficits, with projected increased severity of summer droughts. Our previous research has shown that the vascular plant canopy in these bogs is highly conservative in its water use via transpiration and evaporation, and it is hypothesised that this is a key factor enabling them to accumulate peat over many thousands of years. However, our early work in the 1990’s was for summertime conditions. We are looking for a student to test this hypothesis in terms of the annual water balance of Kopuatai bog. The research methods will combine field experiments on the water balance of the vascular plant canopy, and analysis of eddy covariance (EC) and supporting data accumulated over the last three years. In a parallel study we have been using the EC method to measure ecosystem carbon balance components at the Kopuatai peat bog since late 2011, and are currently writing up our research on CO2 and CH4 exchanges as well as on the overall peatland carbon balance. For background references, see:

Campbell, D.I. and Williamson, J.L., 1997.  Evaporation from a raised peat bog.  Journal of Hydrology, 193: 142–160.

Thompson, M.A., Campbell, D.I., and Spronken-Smith, R.A., 1999. Evaporation from natural and modified raised peat bogs in New Zealand. Agricultural and Forest Meteorology, 95: 85–98.

Carbon balance and the status of peat accumulation in a remnant raised peat bog (PhD). We previously measured CO2 exchanges in the remnant Moanatuatua raised peat bog in NZ about 15 years ago. We had hypothesised that the lowered water table would have led to net CO2 losses resulting in a loss of peat mass. In fact we found that the year-round growing conditions in our mild climate, combined with relatively small respired CO2 losses, actually led to the bog being a very strong sink for CO2. There is renewed interest in restoring this bog, and we need to understand what its current carbon balance (and peat accumulation rate) is compared to the relatively pristine Kopuatai bog, where we have been measuring C balance components for the last 3 years. This study will include the establishment and operation of a new eddy covariance system at Moanatuatua bog, and the design of experiments to determine whether carbon is being partitioned into accumulating peat. There is the opportunity to compare carbon balance exchange processes between “wet” (Kopuatai) and “dry” (Moanatuatua) bogs. See:

Campbell, D.I., Smith, J., Goodrich, J.P., Wall, A.M. and Schipper, L.A., 2014. Year-round growing conditions explains large CO2 sink strength in a New Zealand raised peat bog. Agricultural and Forest Meteorology, 192-193: 59-68.

Optimising drainage design for peat soils (MSc). Around 80% of the Waikato Region’s 94,000 ha of peatland area has been drained for agriculture and continues to suffer from ongoing surface shrinkage and emission of large amounts of CO2 to the atmosphere. Farm drains also threaten water-dependent ecosystems such as the remnant Moanatuatua bog. This research project will investigate the optimal design of farm drainage systems that will allow maximal pasture production without threatening ecosystem sustainability. See:

Pronger, J.; Schipper, L.A.; Hill, R.; Campbell D.I.; McLeod, M. (2014) Subsidence rates of drained agricultural peatlands in New Zealand and the relationship with time since drainage. Journal of Environmental Quality. 43: 1442-1449

Note that the ideas/descriptions/opinions on these pages are ours and may not reflect those of the University of Waikato.